Detección del alumno en riesgo en titulaciones de Ciencias de la Saludaplicación de técnicas de Learning Analytics
- Saiz Manzanares, María Consuelo 1
- Marticorena Sánchez, Raúl 1
- Arnaiz González, Álvar 1
- Escolar Llamazares, María del Camino 1
- Queiruga Dios, Miguel Ángel 1
-
1
Universidad de Burgos
info
ISSN: 2174-8144, 2254-9625
Año de publicación: 2018
Volumen: 8
Número: 3
Páginas: 129-142
Tipo: Artículo
Otras publicaciones en: EJIHPE: European Journal of Investigation in Health, Psychology and Education
Resumen
The way of teaching and learning in twenty-first century society continues to change. At present, a high percentage of teaching takes place through Learning Management Systems that apply Learning Analytics Techniques. The use of these tools, among other things, facilitates knowledge of student learning patterns and the detection of at-risk students. The aim of this study is to establish the most effective learning patterns of the students on the platform in a hierarchical order of importance. It was conducted over two academic years with 122 students of Health Sciences. The instruments used were the Moodle v.3.1 platform and the analysis of logs with Machine Learning regression techniques. The results indicated that the Automatic Linear Prediction Model detected by order of importance: average visits per day, student self-assessment questionnaires, and teacher feedback. The percentage variance of the final results explained by these variables was 50.8%. Likewise, the effectiveness of the behavioral pattern explained 64.1% of the variance in those results, finding three clusters of effectiveness in the behavioral patterns that were detected.
Información de financiación
A todos los participantes en este estudio, así como a las ayudas concedidas al GID de Universidad de Burgos B-Learning en Ciencias de la Salud: Vicerrectorado de Investigación y Transferencia del Conocimiento para la difusión de la investigación 2018 y Vicerrectorado de Personal Docente e Investigador 2018 de la Universidad de Burgos, a la difusión de los resultados de la innovación docente.Financiadores
Referencias bibliográficas
- ANECA (2018). Informe sobre el estado de la evaluación externa de la calidad en las universidades españolas 2017. Documento no publicado.
- Asif, R., Merceron, A., Ali, S.A., y Haider, N.G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers y Education, 113, 177-194. doi: 10.1016/j.compedu.2017.05.007.
- Baker, R.S., y Corbett, A.T. (2014). Assessment of robust learning with educational data mining. Research & Practice in Assessment, 9, 38-50.
- Bannert, M., Reimann, P., y Sonnenberg, C. (2014). Process mining techniques for analysing patterns and strategies in students; self-regulated learning. Metacognition and Learning, 9, 161-185. doi: 10.1007/s11409-013-9107-6.
- Bogarín, A., Cerezo, R., y Romero, C. (2017). Discovering learning processes using Inductive Miner: A case study with Learning Management Systems (LMSs). Psicothema, 30(3). doi: 10.7334/psicothema2018.116.
- Bouchet, F., Harley, J., Trevors, G., y Azevedo, R. (2013). Clustering and profiling students according to their interactions with an intelligent tutoring system fostering self-regulated learning. Journal of Educational Data Mining, 5, 104-146.
- Carbonero, M.A., Román, J.M., y Ferrer, M. (2013). Programa para “aprender estratégicamente” con estudiantes universitarios: diseño y validación experimental. Anales de Psicología, 29, 876-885. doi: 10.6018/analesps.29.3.165671.
- Cerezo, R., Sánchez-Santillan, M., Paule-Ruiz, M.P., y Núñez, J.C. (2016). Students’ LMS interaction patterns and their relationship with achievement: a case study in higher education. Computer and Education, 96, 42–54. doi: 10.1016/j.compedu.2016.02.006.
- ENQA (2018). Considerations for quality assurance of e-learning provision. Recuperado: https://enqa.eu/indirme/Considerations%20for%20QA%20of%20elearning%20provision.pdf
- Marticorena, R., Sáiz, M.C., Arnaiz, Á., Escolar, M.C., y Queiruga, M.Á. (2018). Análisis de los resultados de aprendizaje en Ciencias de la Salud: Learning Analytics desde un plugin para Moodle. En J.J. Gázquez et al., Intervención en contextos clínicos y de la Salud. (Vol. II, pp.263-272). Almería: SCINFOPER.
- Román, J.M., y Poggioli, L. (2013). ACRA (r): Escalas de estrategias de aprendizaje [Scales of learning skills]. Caracas: Publicaciones UCAB (Postgrado: Doctorado en Educación).
- Romero, C., y Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146. doi: 10.1016/j.eswa.2006.04.005.
- Sáiz, M.C. (2018), E- Project Based Learning en Terapia Ocupacional: una aplicación en la asignatura “Estimulación Temprana. Servicio de Publicaciones de la Universidad de Burgos, Burgos.
- Sáiz, M.C., Marticorena, R., García-Osorio, C.I. (2017). Programa individualizado de e-orientación al estudiante desde la plataforma Ubuvirtual: aplicación de Técnicas de Minería de Datos. En V. Abella, V. Ausín y V. Delgado (Eds.), XXV Jornadas Universitarias de Tecnología Educativa: Aulas y Tecnología Educativa en evolución (pp. 476-484). Burgos: EDTNTEC.
- Sáiz, M.C., Marticorena, R., García-Osorio, C.I., Escolar, M.C., y Queiruga, M.I. (2017). Conductas de aprendizaje en LMS: SRL y feedback efectivo en LMS. En J.C Núñez, et al. Temas actuales de investigación en las áreas de la Salud y la Educación (pp.747-752). Almería: SCINFOPER
- Sáiz, M.C., Marticorena, R., García-Osorio, C.I., y Díez-Pastor, J.F. (2017). How do B-Learning and Learning Patterns Influence Learning Outcomes? Frontiers in Psychology, 8(745), 1-13. doi: 10.3389/fpsyg.2017.00745.
- Saqr, M., Fors, U., y Tedre M. (2017). How learning analytics can early predict under-achieving students in a blended medical education course. Med Teach, 39(7), 757-767. doi: 10.1080/0142159X.2017.1309376
- Saeed, N., Yang, Y., y Sinnappan, S. (2009). Emerging Web Technologies in Higher Education: A Case of Incorporating Blogs, Podcasts and Social Bookmarks in a Web Programming Course based on Students’ Learning Styles and Technology Preferences. Educational Technology & Society, 12(4), 98-109. Recuperado: https://goo.gl/wuA1e
- Schneider, B., y Blikstein, P. (2016). Flipping the flipped classroom: A study of the effectiveness of video lectures versus constructivist exploration using tangible user interfaces. IEEE transactions on learning technologies, 9(1), 5-17.
- Statistical Package for the Social Sciences (SPSS) (Versión 24). [Software de análisis estadístico de datos]. Madrid: IBM.
- Trcka, N., y Pechenizkiy, M. (2009). From local patterns to global models: Towards domain driven educational process mining. Intelligent Systems Design and Applications, 2009. ISDA'09. Ninth International Conference on. IEEE (pp. 1114-1119).
- Veenman, M.V.J., Bavelaar, L., De Wolf, L., y Van Haaren, M.G.P. (2014). The online assessment of metacognitive skills in a computerized learning environment. Learning and Individual Differences, 29, 123-130. doi: 10.1016/j.lindif.2013.01.003.